Benha University Faculty of Engineering- Shoubra Eng. Mathematics & Physics Department Postgraduate Studies Qualifying Courses	A UNIVERSITY OF A	Final Term Exam Date: $11 - 1 - 2014$ Course: Linear Algebra Code: EMM 402 Duration: 3 hours	
• Answer all the following questions	-	uestions: 5	
• The Exam Consists of One page		ark: 200	
[1] (a)Determine the linearly independent and linearly dependent: (i) $u = (1, 2), v = (2, 4)$ (ii) $u = (2, 1, 2), v = (1, 2, 0), w = (1, 3, 2)$			10
	0 -	(1, 2, 0), W = (1, 3, 2)	10
(b) If $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 4 & 3 \end{bmatrix}$ and $A = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ Find, if possible, $A + B$, $A + B$			30
$\begin{bmatrix} 2 \end{bmatrix} (a) \text{If } \mathbf{A} = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 5 \end{bmatrix}.$			
(i)Show that A ^t .A is symmetric matrix.			10
(ii)Find the eigenvalues and the eigenvectors and write the Hamilton equation.			30
(b) Show that the eigenvalues of : $A = \begin{bmatrix} a & n \\ n & b \end{bmatrix}$ are real numbers, where a, b, n			10
			10
are real numbers.			
[3]Write the following expressions in matrix form and determine the type:			30
(a) $P = (2x - y + z)^2 + 2xy - 2xz + yz$ (b) $P = 2z + 4z + 2z + 2z^2 + 2z^2 + 2z^2$			
(b) $P = 2xy + 4xz - 2yz - 3x^2 - 2y^2 - 2z^2$			
(c) P = $4xy + 5xz - 2yz + 3x^2 + y^2 + z^2$			
[4](a)Write the Hessian matrix of : for	$(x, y, z) = ye^x + y^4 z^5$	+ 3 at (0, 1, 1).	10
(b) If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 1 & 4 \end{bmatrix}$. Find $B = f(A) = \frac{170A}{A^2 + I}$.			
(b) If $A = \begin{bmatrix} 0 & 3 & 0 \\ 0 & 1 & 4 \end{bmatrix}$. Find $B =$	$f(A) = \frac{1}{A^2 + I}.$		30
[5](a)Write the equations: $a_{11}x + a_{12}y + a_{13}z = b_1$, $a_{21}x + a_{22}y + a_{23}z = b_2$,			
$a_{31}x + a_{32}y + a_{33}z = b_3$ in matrix form and discuss the types of solutions.			30
Also, state two methods with their procedures for solving this linear system.			
(b)Determine the type of solution of the linear system:			
2x - y + 3z = 2, $x + 2y - z =$	-		10
Good Luck		Dr. Mohamed Eid	