Benha University
Faculty of Engineering- Shoubra
Eng. Mathematics \& Physics Department
Postgraduate Studies
Qualifying Courses

Final Term Exam
Date: 11-1-2014
Course: Linear Algebra
Code: EMM 402
Duration: 3 hours

- Answer all the following questions
- No. of questions: 5
- The Exam Consists of One page
- Total Mark: 200
[1] (a)Determine the linearly independent and linearly dependent:
(i) $\mathrm{u}=(1,2), \mathrm{v}=(2,4)$
(ii) $\mathrm{u}=(2,1,2), \mathrm{v}=(1,2,0), \mathrm{w}=(1,3,2)$
(b) If $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 4 & 3\end{array}\right]$ and $A=\left[\begin{array}{cc}2 & -2 \\ 0 & 3 \\ 1 & -1\end{array}\right]$
Find, if possible, $A+B, A+B^{t},|A B|,|B A|$.
(b) If $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 4 & 3\end{array}\right]$ and $A=\left[\begin{array}{cc}2 & -2 \\ 0 & 3 \\ 1 & -1\end{array}\right]$
Find, if possible, $A+B, A+B^{t},|A B|,|B A|$.
[2](a)If $A=\left[\begin{array}{ccc}2 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 5\end{array}\right]$.
(i)Show that A^{t}.A is symmetric matrix.
(ii)Find the eigenvalues and the eigenvectors and write the Hamilton equation.
(b) Show that the eigenvalues of : $A=\left[\begin{array}{ll}a & n \\ n & b\end{array}\right]$ are real numbers, where a, b, n are real numbers.
[3]Write the following expressions in matrix form and determine the type:
(a) $\mathrm{P}=(2 x-y+z)^{2}+2 \mathrm{xy}-2 \mathrm{xz}+\mathrm{yz}$
(b) $\mathrm{P}=2 x y+4 x z-2 y z-3 x^{2}-2 \mathrm{y}^{2}-2 \mathrm{z}^{2}$
(c) $\mathrm{P}=4 x y+5 x z-2 y z+3 x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
[4](a)Write the Hessian matrix of : $f(x, y, z)=y e^{x}+y^{4} z^{5}+3$ at $(0,1,1)$.
(b)If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 1 & 4\end{array}\right]$. Find $B=f(A)=\frac{170 A}{A^{2}+I}$.
[5](a)Write the equations: $a_{11} x+a_{12} y+a_{13} z=b_{1}, a_{21} x+a_{22} y+a_{23} z=b_{2}$, $a_{31} x+a_{32} y+a_{33} z=b_{3}$ in matrix form and discuss the types of solutions. Also, state two methods with their procedures for solving this linear system.
(b)Determine the type of solution of the linear system:
$2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}=2, \quad \mathrm{x}+2 \mathrm{y}-\mathrm{z}=3, \quad 3 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=4$

